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ABSTRACT

Additive noise is shown to induce chaotic motion with sensitive dependence on initial
conditions in multistable dynamical systems. This establishes a fundamental connec-
tion between two fields hitherto viewed as distinct: deterministic chaos and stochastic
differential equations modeling the dynamics of multistable systems. Our results for
additive noise are then generalized to multiplicative noise. Using a newly introduced
model of shot noise, these results for multiplicative noise are applied to the Duffing
oscillator with shot noise-like dissipation.

INTRODUCTION

Multistable systems such as the Duffing oscillator can exhibit irregular (i.e., neither
periodic nor quasiperiodic) motion with jumps. Such motion is referred to as basin-
hopping [1] or stochastic chaos [2] when induced by noise, and deterministic chaos in
the absence of noise. Deterministic and stochastic chaos have been viewed as distinct
and have been analyzed from different, indeed contrasting, points of view. -

In fact, for a wide class of systems stochastic and deterministic chaos can be not
only indistinguishable phenomenologically but also closely related mathematically.
We show this for the paradigmatic case of one-degree-of-freedom multistable systems
whose unperturbed counterparts have homoclinic and heteroclinic orbits. (Exten-
sions of the theory to higher-degree-of-freedom and spatially extended systems are
underway.) When perturbed by weak damping and deterministic periodic forcing,
the dynamics of these systems are periodic or quasiperiodic over certain regions of the
system parameter space. Over other regions of parameter space the dynamics may be
sensitively dependent on initial conditions; i.e., exhibit a topological equivalence to



the Smale horseshoe map. We show that a transition from periodic or quasiperiodic
motion to chaotic motion with sensitive dependence on initial conditions is possible
through the introduction of noise.

We develop computable expressions providing 1) necessary conditions for the oc-
currence of stochastic chaos with jumps and 2) measures of chaotic transport char-
acterizing the "intensity” of the chaos. We obtain these expressions using 1) the
Melnikov transform and the notion of phase space flux, both developed for determin-
istic systems, and 2) uniformly bounded path approximations of Gaussian noise and
shot noise.

The remainder of the paper is divided into three sections. The first section reviews
results for systems perturbed by weak additive noise. In the second section we present
results for multiplicatively perturbed systems. These results are used with a recently
introduced model of shot noise to treat the Duffing oscillator with shot noise-like
dissipation. The last section contains summary comments.

SYSTEMS WITH ADDITIVE EXCITATION

We consider the additively excited dynamical system
& = —V'(z) + g[vg(t) + pG(t) — xd] (1

where V is an energy potential, 0 < £ < 1, and g and G represent deterministic and
stochastic forcing functions, respectively. g is assumed to be bounded, |g(¢)] < 1,
and uniformly continuous (UC). The parameters p, v and x are nonnegative and fix
the relative amounts of damping and external forcing in the model. The unperturbed
(e = 0) counterpart of (1) is assumed to have two hyperbolic fixed points connected
by a heteroclinic orbit Z, = (z,(t), Z,(t)). If the two hyperbolic fixed points coincide,
then &, is homoclinic.

Consider the random forcing

Y o
G(t) = \/% > KON cos(vnt + ©p) (2)

n=1
where {V,, @n;n = 1,2,..., N} are mutually independent random variables, {v,;n =
1,2,...,N} are nonnegative with common distribution ¥, {¢n;n =1,2,...,N} are

identically uniformly distributed over the interval [0,27] and N is a fixed parameter
of the model. S and o in (2) are defined below. The process G is a randomly weighted
modification of the Shinozuka noise model [3]. '

Let F denote the linear filter with impulse response h(t) = z,(—t) where &,(t) is
the velocity component of the orbit #, of system (1). F is called the system orbit
filter and its output is Flu] = u * h where u = u(t) is the filter input and u * h is the
convolution of u and A. S in (2) is then defined to be the modulus S(v) = |H(v)| of
the orbit filter transfer function

H(v) = f_ : h(t)e~d



and o in (2) is -
o? = ‘/0 S*(v)T(dv).

Let the distribution ¥, of the angular frequencies v, in (2) have the form

W(4) = = [ S°()u(dv)

where A is any Borel subset of R. § is assumed to be bounded away from zero on
the support of ¥, S(v) > S > 0 a.e. ¥. Under this condition § is said to be
U-admissible. If S is U-admissible, then it is also bounded away from zero on the
support of ¥, and 1/S(v,) < 1/Sm a.s. ¥, The following results for G and its
filtered counterpart F[G] are proved in [4]: 1) the processes G and F[G] are each
zero-mean and stationary; 2) if S is U-admissible then G is uniformly bounded with
|G(t,w)| < /2N/Sm for all t € R and w € Q; 3) the marginal distribution of F[G] is

that of the sum
N

o —j—,— cos U,

where {U,;n =1,...,N} are independent random variables uniformly distributed on
the interval [0,27]; 4) the processes G and F|[G] are each asymptotically Gaussian
in the limit as N — oo and the random variables G(¢) and F[G](t) are, for each {,
asymptotically Gaussian; 5) the spectrum of G is 2r'¥ and G has unit variance; 6)
if the spectrum ¥ of G is continuous, then F[G] is ergodic; and 7) the spectrum of
F[G] is 21, and its variance is o?. From this last result, it follows that a modified
Shinozuka noise process can be constructed with any prescribed spectrum.

For sufficiently small ¢, the hyperbolic fixed points of the unperturbed system
are displaced to a nearby invariant manifold and the stable and unstable manifolds
associated with the homoclinic or heteroclinic orbit of (1) separate [5]. The distance
between the separated manifolds is expressible as an asymptotic expansion e M +0(e?)
where M is a computable quantity called the Melnikov function. The separated
manifolds may intersect transversely and, if such intersections occur, they are infinite
in number and define lobes marking the transport of phase space [6]. The amount of
phase space transported, the phase space flux, is a measure of the chaoticity of the
dynamics [6]. For the case of small perturbations, the average phase space flux has
the asymptotic expansion £® + O(e?) [6] where @, here called the flux factor, is a time
average of the positive part of the Melnikov function:

&= I -1—fT M*(8; —t,6, — t)dt | (3)
= lsz T (1 y U2 .

T—o00

To apply Melnikov theory to the random perturbation G, G must be uniformly
bounded and uniformly continuous across both time and ensemble. The noise model



G in (2) is uniformly bounded as noted earlier. It is shown in [7] that G has the
needed degree of continuity if and only if G is bandlimited.

The Melnikov function for system (1) is then given by the Melnikov transform
M|g,G] of g and G [8]:

M(t,t) = Mg, Gl (4)
—x [_ : 2()dt + f_ ~ a,(t)g(t + ta)dt

+p /_ : &4(£)G(t + t2)dt.

]

Since h(t) = z,(—t), denoting the integral of 22 by I, we obtain

M(t1,t2) = — Ik + v Flgl(tr) + pF(G|(22). (5)

The expectation and variance of M(%,,1,) are, respectively,
B{M(t1, 1)) = ~In+ 2 Flalt), VarlM(t, )] = o0 = * [~ 5°(0) ¥ (dv).

M(t4,1,) is, like G, a Gaussian process in the limit as N — oo indicating that the
presence of even vanishingly small noise causes the Melnikov function to have simple
zeros. The state of the system is thus driven from one basin of attraction to that of
the competing attractor. Such motion is interpretable as chaotic motion on a single
strange attractor [6].

Substitute (5) into (3). Then
.1 g7
& = Jim o= [ (Flgl(6 — o) + FIGY6: — 8) — Inl*ds. (6)

Existence of the limit in (6) depends on the nature of the excitations g and G and
their corresponding convolutions F[g] = g * h and F[G] = G * h.

To ensure the existence of the limit in (6), we assume that g is asymptotic mean
stationary (AMS): a stochastic process X (t) is defined to be AMS if [9] the limits

.1 (T
px(A)= Jim = [ ELu(X(0)dt ™
exists for each real Borel set A € R. Here 1, is the indicator function, 14(z) = 1 for
z € A and 14(z) = 0 otherwise. This definition applies, in particular, to deterministic
functions X (). We note that all periodic and quasiperiodic functions are AMS. If the

limits in (7) exist then px is a probability measure. ux is called the stationary mean
(SM) distribution of the process X.

F is linear so its output F[g] is AMS and we denote the SM distribution of
Flg] by pris). Assume the spectrum of G is continuous. Then F[G] is ergodic.



Ergodicity implies asymptotic mean stationarity (9] so F [G] is AMS also with SM
distribution prig). All AMS deterministic functions are ergodic so F [g], like F[G], is
ergodic. Inasmuch as F[g] is deterministic, F[g] and F [G] are jointly ergodic with
SM distribution gy X pric) [4]. Then the limit (6) exists and can be expressed in
terms of the SM distributions pr(;) and prie. These observations are the basis for
the following result.

Theorem 1 [4, T]: Suppose g is AMS and G is a ¥-admissible modified Shinozuka
process with continuous bandlimited spectrum. Then the flux factor ® is approxi-
mately

& = E[(yA+ poZ — Ix)?]

where Z is a standard Gaussian random variable. The error in this approximation
decreases to zero as N — oo.

SYSTEMS WITH MULTIPLICATIVE EXCITATION

We now generalize the simp.le additive model used in (1) to the multiplicative excita-
tion model:

(=, £)g(t) + plz, 2)G(2)- (8)
As in the additive excitation model, the function g represents deterministic forcing
while G is a stochastic process representing random forcing.

The Melnikov function is calculated as in (4) to be

Mts,t2) = Mlg, Gl = [ &u(Ol(@ule) 2a()olt + 1) + ploalt), 2(D)G( + )]k
We define orbit filters F; and F; with impulse responses
) =g, 8(1), k() = d(—t)p(2(—t), E(~1))
and corresponding transfer functions Hy(v) and H(v). Then
M(t1,t2) = Falg)(ta) + F2[G](t2)- (9)

We see that the orbit filter F in the additive model is replaced in the multiplicative
model by two different orbit filters ; and F; and that the filters F; and F; are linear,

time-invariant and noncausal with impulse responses given solely in terms of the orbit
@, of the unperturbed system and the functions v and p.

Substituting (9) into (3) gives

1T N |
& = Jim 5 [ [pFilgl(Bs - 8) + 1 F:(G)6: — )} ds. (10)

Just as in the case of the additive excitation model, existence of the limit in (10) hinges
on the joint ergodicity of the function Fi[g] = g * ; and the process F3[G] = G * ha.

Theorem 2: Consider system (1) but with the multiplicative excitation model in (8)
such that g is AMS and F[G] is ergodic. Let px,[;) and pz, e be the SM distributions



of Fi[g] and F3[G), respectively. Then the limit in (10) exists, the flux factor @ is
nonrandom and

& = E[(yA+ pB)']

where A is a random variable with distribution pz,[g, B is a random variable with
distribution pz,g) and A and B are independent.

As an example of a system with multiplicative shot noise, we consider the Duffing
oscillator with weak forcing and non-autonomous damping:

& =gz —a® +elyg(t) — k(Kn(2) + )] (11)

Here v > 0, x > 0 and > 0 are constants, g is deterministic and bounded |g(t)| <1,
and Ky is a form of shot noise. The perturbation in (11) is a particular case of
the multiplicative excitation model (8) with v(z,2) = 1, p(z,z) = —x&, and G(t) =
Kxn(t)+7. &(Kn(t)+n)in (11) serves as a time-varying damping factor and plays the
same role as the constant x in (1). The two terms 7 and kK represent, respectively,
viscous and shot noise-like damping forces. We assume for this example that n = 0.
The shot response r (see below) of Ky is assumed to be nonnegative so that the factor
x Ky is nonnegative.

The usual model of constant-rate shot noise is a stochastic process of the form [10]

K(t)= Y r(t—T:) _ (12)

keZ

where Z is the set of integers, {Tk, k € Z} are the epochs (shots) of a Poisson process
with rate A > 0 and =, the shot response of the process K, is bounded and square-
integrable.

The shot noise model K in (12) is neither bounded nor EUC and cannot be used
in conjunction with Melnikov theory in calculating the phase space flux in chaotic
systems. A modification of the model which approximates K and yet has the requisite
path properties has been developed [7):

Kn(t) = X St — Ty — 45 = T) (13)

JEZ k=1

where N is a positive integer, A; = 2N (7 —1/2)/X and {T, Tjrn,Jj € Z, k=1,...,2V}
are independent random variables such that for each N and 7, {Tin,k=1,2,...,2"}
are identically uniformly distributed in the interval (A;j, Aj1] and T is uniformly
distributed between 0 and 2¥ /). ) is again the rate of the process; it is the mean
number of epochs (shots) Tjkn per unit time. We assume just as for K, that = in (13)
is bounded and square-integrable, that = is UC and that the radial majorant

r*(t) = sup |r(7)|
fri2lel



of the shot response is integrable. According to this specification of Ky, realizations
of the process are obtained by partitioning the real line into the intervals (A4;, A;;1] of
length 2¥ /X with common random phase T and then placing 2V epochs independently
and at random in each interval. The random phase T eliminates the (ensemble) cyclic
nonstationarity produced by partitioning by (A;, A;4+1]. It can be shown [7] that for
large N the shot noise K closely approximates the standard shot noise model K in
all important respects. Also, Ky, unlike K, can be used in Melnikov’s method-type
calculations of the flux factor.

According to Theorem 2, the Melnikov function for the Duffing oscillator (11) is

M(ts,t2) = Falg)(t1) + F2[G](t2)

where
hy(t) = vV/2secht tanh t

and
ha(t) = —2ksech®t tanh?¢.

The corresponding moduli of the filters F; and F; are
Si(v) = \/ivr'yusechg—u

and oo
Sa(v) = 4&/ sech’t tanh® ¢ cos vtdt.
0

We have 51(0) = 0 so the d.c. component (if any) of g is completely removed by F;
and has no effect on the Melnikov function. Ky does have a d.c. component; Ky is
ergodic so its d.c. component is E[Kn] = AR(0) where

RO)= [ : r(t)dt > 0.

S2(0) = 4x/3 > 0 so the d.c. component of Ky passed by F3 is

4«2 R(0)
—

The presence of a d.c. component plays a pivotal role in shifting the parametric
threshold for chaos. See [4] for further discussion.

E[F2[Kn]] = E[Kn|53(0) =

Assume the deterministic forcing function g is AMS. Ky is uniformly bounded
and EUC and F,[Ky] is ergodic. Thus Fi[g] and F,[Kn] are jointly ergodic. By
Theorem 2, the flux factor ® exists and

% = E[(A~ Bn)"]



where the distribution of A is pg, ), the distribution of By is pr,x,} and A and By
are independent. - '

We noted earlier that the distribution of F,[Ky] is, for large N, approximately
that of the shot noise F3[K]. This is the basis for the following theorem.

Theorem & The flux factor ® for the Duffing oscillator (11) with weak forcing and
shot noise damping coefficent kK is approximately

® = E[(A- B)*]

where A is ur [g-distributed, B is pz,[x}-distributed, A and B are independent and K
is the shot noise (12). The error in this approximation decreases to zero as N — co.

® can be calculated numerically as follows for given system parameters v, v and
k and shot parameters A and ». Define

@'=_?___ A'=__‘A.1__ 1 By )"zl?’\_Rz_@ ,c'=______:';_'_°J_
S:(v)’ 751 (v)’ YS1(v)’ 9J '’ 4v5:(v)R(0)

where o
J= / (r * h)2(t)dt.

Then
®' = E[(A' - B')"’].

The random variable B’ is approximately gamma-distributed [11] with density

o1 e—t/ﬂ

[2iC

where the parameters o and ﬁ are determined by the condition that E[B’] and Var[B’]
equal the mean and the variance, respectively, of the gamma distribution. &' =
®'(«x’, ') is plotted in Figure 1.

SUMMARY

Noise can cause multistable dynamical systems to exhibit chaotic motion with sensi-
tive dependence on initial conditions. The theory applicable to noise-induced chaotic
dynamics reviewed in this paper rests primarily on the concept of the Melnikov trans-
form and on techniques for approximating noise with any given spectrum and marginal
distribution by uniformly bounded, ensemble uniformly continuous processes. The
results described here apply to weakly perturbed, one-degree-of-freedom dynamical
systems featuring homoclinic or heteroclinic orbits. Results were first given for addi-
tive perturbation and then generalized to multiplicative perturbation. Extensions of
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Figure 1. The flux factor @’ as a function of the damping
constant ¥’ for various shot rates A",




this work to higher-degree-of-freedom systems and to spatially extended systems are
in progress.
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